4.1 Article Proceedings Paper

Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview

Journal

AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL
Volume 126, Issue -, Pages 30-38

Publisher

ELSEVIER
DOI: 10.1016/j.autneu.2006.02.027

Keywords

food intake regulation; BDNF; hypothalamus; dorsal vagal complex

Categories

Ask authors/readers for more resources

Neurotrophins, and in particular BDNF, play important roles in proliferation, differentiation and survival of neurons during development, as well as in the synaptic activity and plasticity in many groups of mature neurons. Several lines of evidence suggest that BDNF and its high affinity receptor TrkB contribute to food intake and body weight control. In rodents, pharmacological treatments with BDNF induce reduction in food intake, whereas genetic models with an altered BDNF/TrkB signalling display hyperphagia and obesity. Genetic studies in humans have shown that mutations in the BDNF or TrkB genes may account for certain types of obesity or other forms of eating disorders. Since circulating levels of BDNF correlate with eating disorders in humans and peripheral BDNF treatments reduce hyperphagia and hyperglycaemia in obese diabetic rodents, an endocrine role of BDNF appears plausible and requires further investigation. A central anorectic action of BDNF has also been documented, with a primary focus on the hypothalamus and a more recent highlight on the brainstem integrator of energy homeostasis, the dorsal vagal complex. In this review, we will briefly present neurotrophins and their receptors and focus on experimental evidence which point out BDNF as a signalling component of food intake regulation, with a particular emphasis on the localization of the central anorectic action of BDNF. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available