4.6 Article

A G316A mutation of manganese lipoxygenase augments hydroperoxide isomerase activity - Mechanism of biosynthesis of epoxyalcohols

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 26, Pages 17612-17623

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M510311200

Keywords

-

Ask authors/readers for more resources

Lipoxygenases with R stereospecificity have a conserved Gly residue, whereas (S)-lipoxygenases have an Ala residue. Site-directed mutagenesis has shown that these residues control position and S/R stereospecificity of oxygenation. Recombinant Mn-LO was expressed in Pichia pastoris, and its conserved Gly-316 residue was mutated to Ala, Ser, Val, and Thr. The G316A mutant was catalytically active. We compared the catalytic properties of Mn-LO and the G316A mutant with 17: 3n-3, 18: 2n-6, 18: 3n-3, and 19: 3n-3 as substrates. Increasing the fatty acid chain length from C17 to C19 shifted the oxygenation by Mn-LO from the n-6 toward the n-8 carbon. The G316A mutant increased the oxygenation at the n-8 carbon of 17:3n-3 and at the n-10 carbon of the C17 and C18 fatty acids (from 1-2% to 7-11%). The most striking effect of the G316A mutant was a 2-, 7-, and 15-fold increase in transformation of the n-6 hydroperoxides of 19:3n-3, 18:3n-3, and 17:3n-3, respectively, to keto fatty acids and epoxyalcohols. The n-3 double bond was essential. An experiment under an oxygen-18 atmosphere showed that both oxygen atoms were retained in the epoxyalcohols. ( R)Hydroperoxides at n-6 of C17:3, 18:3, and 19:3 were transformed 5 times faster than S stereoisomers. The G316A mutant converted (13R)-hydroperoxylinolenic acid to 13-ketolinolenic acid (with an apparent Km of 0.01 mM) and to epoxyalcohols (viz. erythro-and threo-11-hydroxy-(12R, 13R)-epoxy-( 9Z, 15Z)-octadecadienoic acids and one of the corresponding cis-epoxides as major products). A reducing lipoxygenase inhibitor stimulated the hydroperoxide isomerase activity, whereas a suicide-type lipoxygenase inhibitor reduced this activity. The n-3 double bond also appeared to influence the anaerobic formation of epoxyalcohols by Mn-LO, since 18:2n-6 and 18:3n-3 yielded different profiles of epoxyalcohols. Our results suggest that the G316A mutant augmented the hydroperoxide isomerase activity by positioning the hydroperoxy group at the n- 6 carbon of n- 3 fatty acids closer to the reduced catalytic metal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available