4.6 Article

Thalamic and hippocampal mechanisms in spatial navigation: A dissociation between brain mechanisms for learning how versus learning where to navigate

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 170, Issue 2, Pages 241-256

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2006.02.023

Keywords

navigation; learning; memory; hippocampus; thalamus; watermaze

Ask authors/readers for more resources

Various studies of hippocampus and medial thalamus (MT) suggest that these brain areas play a crucial, marginal, or no essential role in spatial navigation. These divergent views were examined in experiments using electrolytic Lesions of fimbria-fornix (FF) or radiofrequency or neurotoxic Lesions of MT of rats subsequently trained to find a stable visible (experiment 1) or hidden platform (experiments 2 and 3) in a water maze (WM) pool. Rats with electrolytic Lesions of FF or radiofirequency Lesions of MT were impaired in swimming to a stable visible platform, particularly the MT Lesion Group, suggesting impairment of WM strategies acquisition. Additional Lesioned rats were then tested in a hidden platform version of the WM task. Some rats were given Morris's nonspatial pretraining prior to Lesioning to provide them with training in the required WM behavioral strategies. Nonspatially Pretrained rats with FF Lesions eventually were able to navigate to the hidden platform, but the accuracy of place responding was impaired. This impairment occurred without problems in the motoric control of swimming or the use of WM behavioral strategies, suggesting that these rats had a spatial mapping impairment. Rachofrequency MT Lesions blocked acquisition of WM behavioral strategies by Naive rats throughout 3 days of training, severely impairing performance on all aspects of the hidden platform task. Nonspatially Pretrained rats given the same MT Lesions readily learned the hidden platform location and were indistinguishable from controls throughout spatial training. Rats given neurotoxic Lesions of MT for removal of cells were only mildly impaired and improved considerably during training, suggesting an important role for fibers of passage in WM strategies learning. The results provide a clear dissociation between a role for MT in learning WM behavioral strategies and the hippocampal formation in spatial mapping and memory. This is the first identification of a brain area, MT, that is essential for learning behavioral strategies that by themselves do nor constitute the solution to the task but are necessary for the successful use of an innate learning ability: place response learning using spatial mapping. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available