4.6 Article

Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature

Journal

PHYSICAL REVIEW B
Volume 74, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.024508

Keywords

-

Ask authors/readers for more resources

The competition between d-wave superconductivity (SC) and antiferromagnetism (AF) in the high-T-c cuprates is investigated by studying the hole- and electron-doped two-dimensional Hubbard model with a recently proposed variational quantum-cluster theory. The approach is shown to provide a thermodynamically consistent determination of the particle number, provided that an overall shift of the on-site energies is treated as a variational parameter. The consequences for the single-particle excitation spectra and for the phase diagram are explored. By comparing the single-particle spectra with quantum Monte Carlo and experimental data, we verify that the low-energy excitations in a strongly correlated electronic system are described appropriately. The cluster calculations also reproduce the overall ground-state phase diagram of the high-temperature superconductors. In particular, they include salient features such as the enhanced robustness of the antiferromagnetic state as a function of electron doping and the tendency towards phase separation into a mixed antiferromagnetic-superconducting phase at low doping and a pure superconducting phase at high (both hole and electron) doping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available