4.7 Article

Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance

Journal

PLANT CELL AND ENVIRONMENT
Volume 29, Issue 7, Pages 1437-1448

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2006.01527.x

Keywords

acquired thermotolerance; basal thermotolerance; DGD1; DGDG

Categories

Ask authors/readers for more resources

Plants are constantly challenged with various abiotic stresses in their natural environment. Elevated temperatures have a detrimental impact on overall plant growth and productivity. Many plants increase their tolerance to high temperatures through an adaptation response known as acquired thermotolerance. To identify the various mechanisms that plants have evolved to cope with high temperature stress, we have isolated a series of Arabidopsis mutants that are defective in the acquisition of thermotolerance after an exposure to 38 degrees C, a treatment that induces acquired thermotolerance in wild-type plants. One of these mutants, atts02, was not only defective in acquiring thermotolerance after the treatment, but also displayed a reduced level of basal thermotolerance in a 30 degrees C growth assay. The affected gene in atts02 was identified by positional cloning and encodes digalactosyldiacylglycerol synthase 1 (DGD1) (the atts02 mutant was, at that point, renamed dgd1-2). An additional dgd1 allele, dgd1-3, was identified in two other mutant lines displaying altered acquired thermotolerance, atts100 and atts104. Expression patterns of several heat shock proteins (HSPs) in heat-treated dgd1-2 homozygous plants were similar to those from identically treated wild-type plants, suggesting that the thermosensitivity in the dgd1-2 mutant was not caused by a defect in HSP induction. Lipid analysis of wild-type and mutant plants indicated a close correlation between the ability to acquire thermotolerance and the increases in digalactosyldiacylglycerol (DGDG) level and in the ratio of DGDG to monogalactosyldiacylglycerol (MGDG). Thermosensitivity in dgd1-2 and dgd1-3 was associated with (1) a decreased DGDG level and (2) an inability to increase the ratio of DGDG to MGDG upon exposure to a 38 degrees C sublethal temperature treatment. Our results suggest that the DGDG level and/or the ratio of DGDG to MGDG may play an important role in basal as well as acquired thermotolerance in Arabidopsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available