4.6 Article

Robust supervisory control for production systems with multiple resource failures

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2005.861397

Keywords

deadlock avoidance; fault tolerance; flexible manufacturing systems; robust control

Ask authors/readers for more resources

Supervisory control for deadlock-free resource allocation has been an active area of manufacturing systems research. To date, most work assumes that allocated resources do not fail. Little research has addressed allocating resources that may fail. In our previous work, we assumed a single unreliable resource and developed supervisory controllers to ensure robust deadlock-free operation in the event of resource failure. In this paper, we assume that several unreliable resources may fail simultaneously. In this case, a controller must guarantee that a set of resource failures does not propagate through blocking to stall other portions of the system. That is, the controller must ensure that every part type not requiring any of the failed resources should continue to produce smoothly without disruption. To do this, the controller must constrain the system to states that serve as feasible initial states for: 1) a reduced system when resource failures occur and 2) an upgraded system when failed resources are repaired. We develop the properties that such a controller must possess and then develop supervisory controllers that satisfy these properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available