4.6 Article

Acoustic phonon confinement in silicon nanolayers:: Effect on electron mobility

Journal

JOURNAL OF APPLIED PHYSICS
Volume 100, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2208849

Keywords

-

Ask authors/readers for more resources

We demonstrate the confinement of acoustic phonons in ultrathin silicon layers and study its effect on electron mobility. We develop a model for confined acoustic phonons in an ideal single-layer structure and in a more realistic three-layer structure. Phonon quantization is recovered, and the dispersion relations for distinct phonon modes are computed. This allows us to obtain the confined phonon scattering rates and, using Monte Carlo simulations, to compute the electron mobility in ultrathin silicon on insulator inversion layers. Thus, comparing the results with those obtained using the bulk phonon model, we are able to conclude that it is very important to include confined acoustic phonon models in the electron transport simulations of ultrathin devices, if we want to reproduce the actual behavior of electron transport in silicon layers of nanometric thickness. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available