4.7 Article

Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors

Journal

PHYSICAL REVIEW E
Volume 74, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.74.011906

Keywords

-

Ask authors/readers for more resources

The fluctuation theorems for the currents and the dissipated work are considered for molecular motors which are driven out of equilibrium by chemical reactions. Because of the molecular fluctuations, these nonequilibrium processes are described by stochastic models based on a master equation. Analytical expressions are derived for the fluctuation theorems, allowing us to obtain predictions on the work dissipated in the motor as well as on its rotation near and far from thermodynamic equilibrium. We show that the fluctuation theorems provide a method to determine the affinity or thermodynamic force driving the motor. This affinity is given in terms of the free enthalpy of the chemical reactions. The theorems are applied to the F-1 rotary motor which turns out to be a stiff system typically functioning in the nonlinear regime of nonequilibrium thermodynamics. We show that this nonlinearity confers a robustness to the functioning of the molecular motor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available