3.8 Review

A concise review of DNA damage checkpoints and repair in mammalian cells

Journal

CARDIOVASCULAR REVASCULARIZATION MEDICINE
Volume 7, Issue 3, Pages 165-172

Publisher

ELSEVIER INC
DOI: 10.1016/j.carrev.2006.02.002

Keywords

DNA damage checkpoints; Repair; Nuclear proteins; Cell cycle

Funding

  1. Netherlands Heart Foundation [99118]

Ask authors/readers for more resources

DNA of eukaryotic cells, including vascular cells, is under the constant attack of chemicals, free radicals, or ionizing radiation that can be caused by environmental exposure, by-products of intracellular metabolism, or medical therapy. Damage may be either limited to altered DNA bases and abasic sites or extensive like double-strand breaks (DSBs). Nuclear proteins sense this damage and initiate the attachment of protein complexes at the site of the lesion. Subsequently, signal transducers, mediators, and finally, effector proteins phosphorylate targets (e.g., p53) that eventually results in cell cycle arrest at the G1/S, intra-S, or G2/M checkpoint until the lesion undergoes repair. Defective cell cycle arrest at the respective checkpoints is associated with genome instability and oncogenesis. When cell cycle arrest is accomplished, the DNA repair machinery can become effective. Important pathways in mammalian cells are the following: base excision repair, nucleotide excision repair, mismatch repair, and DSB repair. When repair is successful, the cell cycle arrest may be lifted. If repair is unsuccessful (e. g., by high doses of DNA-damaging agents or genetic defects in the DNA repair machinery), then this may lead to permanent cell cycle arrest (cellular senescence), apoptosis, or oncogenesis. (C) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available