4.8 Article

Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds

Journal

BIOMATERIALS
Volume 27, Issue 20, Pages 3782-3792

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.02.037

Keywords

hyaluronic acid; electrospinning; nanofibers; hydrogel; tissue engineering

Funding

  1. NIA NIH HHS [AG010143] Funding Source: Medline
  2. NIDCD NIH HHS [DC004336] Funding Source: Medline

Ask authors/readers for more resources

A three-dimensional (3D) hyaluronic acid (HA) nanofibrous scaffold was successfully fabricated to mimic the architecture of natural extracelluar matrix (ECM) based on electrospinning. Thiolated HA derivative, 3,3'-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), was synthesized and electrospun to form 3D nanofibrous scaffolds. In order to facilitate the fiber formation during electrospinning, Poly (ethylene oxide) (PEO) was added into the aqueous solution of HA-DTPH at an optimal weight ratio of 1:1. The electrospun HA-DTPH/PEO blend scaffold was subsequently cross-linked through poly (ethylene glycol)-diacrylate (PEGDA) mediated conjugate addition. PEO was then extracted in DI water to obtain an electrospun HA-DTPH nanofibrous scaffold. NIH 3T3 fibroblasts were seeded on fibronectin-adsorbed HA-DTPH nanofibrous scaffolds for 24 h in vitro. Fluorescence microscopy and laser scanning confocal microscopy revealed that the 3T3 fibroblasts attached to the scaffold and spread, demonstrating an extended dendritic morphology within the scaffold, which suggests potential applications of HA-DTPH nanofibrous scaffolds in cell encapsulation and tissue regeneration. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available