4.6 Article

Degradation of commercial biodegradable packages under real composting and ambient exposure conditions

Journal

JOURNAL OF POLYMERS AND THE ENVIRONMENT
Volume 14, Issue 3, Pages 317-334

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10924-006-0015-6

Keywords

biopolymers; compostability; degradation; GPC; hydrolysis; poly(lactide)

Ask authors/readers for more resources

The use of long-lasting polymers as packaging materials for short lived applications is not entirely justified. Plastic packaging materials are often soiled due to foodstuffs and other biological substances, making physical recycling of these materials impractical and normally unwanted. Hence, there is an increasing demand for biodegradable packaging materials which could be easily renewable. Use of biopolymer based packaging materials allows consideration of eliminating issues such as landfilling, sorting and reprocessing through taking advantage of their unique functionality, that is compostability. Composting allows disposal of biodegradable packages and is not as energy intensive compared to sorting and reprocessing for recycling, although it requires more energy than landfilling. The aim of this work was to study the degradation of three commercially available biodegradable packages made of poly (LD-lactide) (PLA) under real compost conditions and under ambient exposure by visual inspection, gel permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. A novel technique to study the degradability of these packages and to track the degradation rate under real compost conditions was used. The packages were subjected to composting for 30 days, and the degradation of the physical properties was measured at 1, 2, 4, 6, 9, 15 and 30 days. PLA packages made of 96% L-lactide exhibited lower degradation than PLA packages made of 94% L-lactide, mainly due to their highly ordered structure, therefore, higher crystallinity. The degradation rate changed as the initial crystallinity and the L-lactide content of the packages varied. Temperature, relative humidity, and pH of the compost pile played an important role in the total degradation of the packages. A first order degradation of the molecular weight as a function of time was observed for the three packages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available