4.5 Article

Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi

Journal

MYCORRHIZA
Volume 16, Issue 5, Pages 371-379

Publisher

SPRINGER
DOI: 10.1007/s00572-006-0046-9

Keywords

arbuscular mycorrhizas; soil salinity; spore germination; Hyphae

Ask authors/readers for more resources

Colonisation of plant roots by some arbuscular mycorrhizal (AM) fungi is reduced in the presence of sodium chloride (NaCl), probably due to a direct effect of NaCl on the fungi. However, there appear to be differences between the fungi in their ability to colonise plants in the presence of NaCl. This experiment tested the hypothesis that propagules of different isolates and species of AM fungi from saline and nonsaline soils would differ in their ability to germinate and grow in the presence of NaCl in the soil solution. Spores or pieces of root colonised by a range of AM fungi were incubated between filters buried in soil to which NaCl had been added at concentrations of 0, 150 or 300 mM in the soil solution. At regular intervals, filters were removed from the soil and both the percentage of propagules which had germinated and the length of proliferating hyphae were determined. Germination of spores of AM fungi studied was delayed in the presence of NaCl, but the fungi differed in the extent to which germination was inhibited. Two isolates of Scutellospora calospora reached maximum germination in 300 mM NaCl, but neither of two isolates of Acaulospora laevis germinated in the presence of NaCl. Germination of spores of the other fungi, including some isolated from saline soil, fell between these extremes. For some fungi, the specific rate of hyphal extension was reduced by NaCl. For others, the specific rate of growth was similar in the presence of NaCl to that in the control treatment, but overall production of hyphae was reduced in the NaCl treatments because germination was reduced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available