4.3 Article

Visual influences on primate encephalization

Journal

JOURNAL OF HUMAN EVOLUTION
Volume 51, Issue 1, Pages 76-90

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jhevol.2006.01.005

Keywords

eye; brain; retina; ganglion cell; optic nerve; optic foramen; carnivore; adapiform; omomyiform

Ask authors/readers for more resources

Primates differ from most other mammals in having relatively large brains. As a result, numerous comparative studies have attempted to identify the selective variables influencing primate encephalization. However, none have examined the effect of the total amount of visual input on relative brain size. According to Jerison's principle of proper mass, functional areas of the brain devoted primarily to processing visual information should exhibit increases in size when the amount of visual input to those areas increases. As a result, the total amount of visual input to the brain could exert a large influence on encephalization because visual areas comprise a large proportion of total brain mass in primates. The goal of this analysis is to test the expectation of a direct relationship between visual input and encephalization using optic foramen size and optic nerve size as proxies for total visual input. Data were collected for a large comparative sample of primates and carnivorans, and three primary analyses were undertaken. First, the relationship between relative proxies for visual input and relative endocranial volume were examined using partial correlations and phylogenetic comparative methods. Second, to examine the generality of the results derived for extant primates, a parallel series of partial correlation and comparative analyses were undertaken using data for carnivorans. Third, data for various Eocene and Oligocene primates were compared with those for living primates in order to determine whether the fossil taxa demonstrate a similar relationship between relative brain size and visual input. All three analyses confirm the expectations of proper mass and favor the conclusion that the amount of visual input has been a major influence on the evolution of relative brain size in both primates and carnivorans. Furthermore, this study suggests that differences in visual input may partly explain (1) the high encephalization of primates relative to the primitive eutherian condition, (2) the high encephalization of extant anthropoids relative to other primates, and (3) the very low encephalization of Eocene adapiforms. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available