4.7 Article

Central Axons Preparing to Myelinate Are Highly Sensitivity to Ischemic Injury

Journal

ANNALS OF NEUROLOGY
Volume 72, Issue 6, Pages 936-951

Publisher

WILEY
DOI: 10.1002/ana.23690

Keywords

-

Funding

  1. NIH National Institutes of Neurological Disorders and Stroke [NS44875, 1RO1NS054044, R37NS045737]
  2. American Heart Association [11GRANT7510072]
  3. March of Dimes Birth Defects Foundation
  4. Department of Veterans Affairs Merit Review Program

Ask authors/readers for more resources

Objective: Developing central white matter is subject to ischemic-type injury during the period that precedes myelination. At this stage in maturation, central axons initiate a program of radial expansion and ion channel redistribution. Here we test the hypothesis that during radial expansion axons display heightened ischemic sensitivity, when clusters of Ca2+ channels decorate future node of Ranvier sites. Methods: Functionality and morphology of central axons and glia were examined during and after a period of modeled ischemia. Pathological changes in axons undergoing radial expansion were probed using electrophysiological, quantitative ultrastructural, and morphometric analysis in neonatal rodent optic nerve and periventricular white matter axons studied under modeled ischemia in vitro or after hypoxia-ischemia in vivo. Results: Acute ischemic injury of central axons undergoing initial radial expansion was mediated by Ca2+ influx through Ca2+ channels expressed in axolemma clusters. This form of injury operated only in this axon population, which was more sensitive to injury than neighboring myelinated axons, smaller axons yet to initiate radial expansion, astrocytes, or oligodendroglia. A pharmacological strategy designed to protect both small and large diameter premyelinated axons proved 100% protective against acute ischemia studied under modeled ischemia in vitro or after hypoxia-ischemia in vivo. Interpretation: Recent clinical data highlight the importance of axon pathology in developing white matter injury. The elevated susceptibility of early maturing axons to ischemic injury described here may significantly contribute to selective white matter pathology and places these axons alongside preoligodendrocytes as a potential primary target of both injury and therapeutics. ANN NEUROL 2012;72:936-951

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available