4.4 Article

Divergence with gene flow in Anopheles funestus from the Sudan Savanna of Burkina Faso, West Africa

Journal

GENETICS
Volume 173, Issue 3, Pages 1389-1395

Publisher

GENETICS
DOI: 10.1534/genetics.106.059667

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI048842, R01-AI48842] Funding Source: Medline

Ask authors/readers for more resources

Anopheles funestus is a major vector of malaria across Africa. Understanding its complex and non-equilibrium population genetic structure is an important challenge that must be overcome before vector populations can be successfully perturbed for malaria control. Here we examine the role of chromosomal inversions in structuring genetic variation and facilitating divergence in Burkina Faso, West Africa, where two incipient species (chromosomal forms) of A. funestus, defined principally by rearrangements of chromosome 3R, have been hypothesized. Sampling across an similar to 300-km east-west transect largely contained within the Sudan-Savanna ecoclimatic zone, we analyzed chromosomal inversions, 16 microsatellite loci distributed genomewide, and 834 bp of the mtDNA ND5 gene. Both molecular markers revealed high genetic diversity, nearly all of which was accounted for by within-population differences among individuals, owing to recent population expansion. Across the study area there was no correlation between genetic and geographic distance. Significant genetic differentiation found between chromosomal forms on the basis of microsatellites was not genomewide but could be explained by chromosome 3R alone on the basis of loci inside and near inversions. These data are not compatible with complete reproductive isolation but are consistent with differential introgression and sympatric divergence between the chromosomal forms, facilitated by chromosome 3R inversions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available