4.5 Article

Payne rearrangement during analysis of epoxyalcohols of linoleic and α-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry

Journal

ANALYTICAL BIOCHEMISTRY
Volume 354, Issue 1, Pages 111-126

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2006.04.010

Keywords

epoxide migration; hydroperoxylinoleic acid; ion trap mass spectrometry; keto-enol tautomerism; keto fatty acids

Ask authors/readers for more resources

Hydroperoxides of polyunsaturated fatty acids can be transformed to epoxyalcohols and keto fatty acids by metal enzymes, hematin, and various catalysts. In the current study, we used hematin to transform 9-hydroperoxy-10E,12Z-octadecadienoic acid and 13-hydroperoxy-9Z, 11E-octadecadienoic acid to epoxyalcohols (with trans epoxide configuration) and to keto fatty acids. The products were separated by normal phase high-performance liquid chromatography (NP-HPLC) and analyzed using postcolumn addition of isopropanol/ water and online negative ion electrospray ionization mass spectrometry (MS). The tandem MS (MS/MS) spectra were studied using analogs prepared from [9,10,12,13-H-2(4)]linoleic acid (18:2n-6) and from alpha-linolenic acid (18:3n-3). We also studied the MS/MS spectra of epoxyalcohols formed from 11-hydroperoxy- and 8-hydroperoxy-9Z, 12Z-octadecadienoic acids. Results were confirmed by MS/MS analysis of a series of authentic standards. MS/MS ions of 9-keto-10E,12Z-octadecadienoic acid and 13-keto-9Z,11E-octadecadiciloic acid could be explained by keto-enol tautomerism. MS/MS spectra of regioisomeric allylic epoxyalcohols differed in relative intensities of characteristic ions. The MS/MS spectra of the epoxyalcohols with 1-hydroxy-2,3-epoxy-4Z-pentene or 3-hydroxy-1,2-epoxy-4Z-pentene elements were virtually identical and showed two characteristic ions that differed by 30 in m/z values (CH(OH)). The results suggested that epoxide migration (Payne rearrangement) occurred during collision-induced dissociation. We conclude that regioisomeric allylic epoxyalcohols can be identified by their MS/MS spectra, whereas regioisomeric epoxyalcohols can be identified by MS/MS in combination with their retention times on NP-HPLC. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available