4.5 Article

Metal filled high density polyethylene composites - Electrical and tensile properties

Journal

JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
Volume 19, Issue 4, Pages 413-425

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705706062197

Keywords

metal filled polyethylene; electrical resistivity; metal fillers; tensile properties

Ask authors/readers for more resources

The electrical resistivity and tensile properties of composites formed by the incorporation of metal powders such as aluminum (Al), copper (Cu), and iron (Fe) in a high-density polyethylene (HDPE) matrix are investigated. Results are presented for metal fillers content varying between 0 and 55% by volume. The effect of different types of filler and filler content on electrical and tensile properties of the composites is analyzed. As a result, it is found that the electrical resistivity properties of the composites are governed by the shape of the filler and the amount of filler content. In this study, it is found that the tensile strength is influenced by the shape of the filler, degree of crystallinity and the adhesion between metal fillers and polymer. For example, more metal filler loading results in filler agglomeration which reduces the adhesion between metal fillers and polymer and increases the metal-to-metal contacts, this subsequently reduces the strength of the composite materials. The Young's modulus of the composite systems seems to follow the normal trend of filled polymer composites, where in general the Young's modulus increases with increasing amount of filler loadings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available