4.1 Article

A zebrafish assay for identifying neuroprotectants in vivo

Journal

NEUROTOXICOLOGY AND TERATOLOGY
Volume 28, Issue 4, Pages 509-516

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ntt.2006.04.003

Keywords

anti-oxidants; neuroprotectants; apoptosis; zebrafish; image analysis; blood-brain barrier

Funding

  1. NINDS NIH HHS [1R43NS050874-01] Funding Source: Medline

Ask authors/readers for more resources

In this study, we developed an in vivo method to determine drug effects on oxidation-induced apoptosis in the zebrafish brain caused by treatment with L-hydroxyglutaric acid (LGA). We confirmed that LGA-induced apoptosis was caused by oxidation by examining the presence of an oxidative product, nitrotyrosine. Next, we examined the effects of 14 characterized neuroprotectants on LGA-treated zebrafish, including: D-methione (D-Met), Indole-3-carbinol, deferoxamine (DFO), dihydroxybenzoate (DHB), deprenyl, L-NAME (N(G)-nitro-L-arginine methyl ester), n-acetyl L-cysteine (L-NAC), 2-oxothiazolidine-4-carboxylate (OTC), lipoic acid, minocycline, isatin, cortisone, ascorbic acid and et-tocopherol. Eleven of 14 neuroprotectants and 7 of 7 synthetic anti-oxidants exhibit significant protection in zebrafish. Buthionine sulfoximine (BSO), used as a negative control, exhibited no significant protective effects. In addition, three blood-brain barrier (BBB) impermeable compounds exhibited no significant effects. Our results in zebrafish were similar to results reported in mammals supporting the utility of this in vivo method for identifying potential neuroprotective anti-oxidants. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available