4.6 Article

General theorem relating the bulk topological number to edge states in two-dimensional insulators

Journal

PHYSICAL REVIEW B
Volume 74, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.045125

Keywords

-

Ask authors/readers for more resources

We prove a general theorem on the relation between the bulk topological quantum number and the edge states in two-dimensional insulators. It is shown that whenever there is a topological order in bulk, characterized by a nonvanishing Chern number, even if it is defined for a nonconserved quantity such as spin in the case of the spin Hall effect, one can always infer the existence of gapless edge states under certain twisted boundary conditions that allow tunneling between edges. This relation is robust against disorder and interactions, and it provides a unified topological classification of both the quantum (charge) Hall effect and the quantum spin Hall effect. In addition, it reconciles the apparent conflict between the stability of bulk topological order and the instability of gapless edge states in systems with open boundaries (a known happening in the spin Hall case). The consequences of time reversal invariance for bulk topological order and edge state dynamics are further studied in the present framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available