4.5 Article

Bioanalysis in structured microfluidic systems

Journal

ELECTROPHORESIS
Volume 27, Issue 13, Pages 2651-2658

Publisher

WILEY
DOI: 10.1002/elps.200500923

Keywords

DNA; microfluidic device; migration phenomena; protein; single cell analytics

Ask authors/readers for more resources

Microfluiclic and lab-on-a-chip devices have attracted widespread interest in separation sciences and bioanalysis. Recent designs in microfluidic devices extend common separation concepts by exploiting new phenomena for molecular dynamics on a length scale of 10 mu m and below, giving rise to novel manipulation tools and nonintuitive phenomena for microseparations. Here, we focus on three very recent developments for bioseparations based on tailored microfluidic systems: Single cell navigation, trapping and steering with subsequent on-chip lysis, protein separation and LIF detection (Section 3.1), then we report dielectrophoretic trapping and separation of large DNA fragments in structured microfluidic devices (Section 3.2). Finally, a paradoxial migration phenomenon based on thermal fluctuations, periodically arranged microchannels and a biased alternating current electric field is presented in Section 3.3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available