4.3 Article

Integrating CFD and piloted simulation to quantify ship-helicopter operating limits

Journal

AERONAUTICAL JOURNAL
Volume 110, Issue 1109, Pages 419-428

Publisher

ROYAL AERONAUTICAL SOC
DOI: 10.1017/S0001924000001329

Keywords

-

Ask authors/readers for more resources

This paper describes a study which has been concerned with numerical predictions of the airwakes resulting from two simplified ship geometries: the internationally agreed Simple Frigate Shape, SFS1, and its successor, SFS2. Extensive steady-state simulations have been carried out for a wide range of wind conditions using Fluent, a commercially available Computational Fluid Dynamics (CFD) code. The CFD predictions have been partially validated against wind tunnel data produced by the National Research Council of Canada (NRC) and have shown good agreement. The resulting airwake velocity components have been exported from Fluent, interpolated onto suitable grids and attached to the FLIGHTLAB flight-simulation environment as look-up tables; piloted flight trials were then carried out using the Liverpool full-motion simulator. The pilot workload and helicopter control margins resulting from a range of wind-over-deck conditions have been used to develop the Ship-Helicopter Operating Limits (SHOL) for a Lynx-like helicopter and the SFS2. The workload was compared to the pilot's experiences on a similar aircraft and a Type 23 Frigate and the simulated SHOL compared with SHOLs derived from sea trials. The results are very encouraging and open up further the long awaited prospect of such simulations being used in the future to reduce at-sea trials, and to provide a safe environment for pilot training.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available