4.3 Article

Carotenoid production from hydrolyzed molasses by Dietzia natronolimnaea HS-1 using batch, fed-batch and continuous culture

Journal

ANNALS OF MICROBIOLOGY
Volume 64, Issue 3, Pages 945-953

Publisher

SPRINGER
DOI: 10.1007/s13213-013-0728-4

Keywords

Dietzia; Carotenoid bioproduction; Enhanced biomass; Growth kinetic; Industrial fermentation; Enzymatic hydrolysis

Funding

  1. University of Tehran
  2. Iranian center of excellence for application of modern technologies for producing functional foods and drinks

Ask authors/readers for more resources

The different cultivation strategies of batch, fed-batch and continuous culture for the synthesis of biomass and carotenoids by Dietzia natronolimnaea HS-1 from waste molasses and its hydrolysate were compared. The efficiency of three various pretreatments (enzymatic, acidic and acidic at high temperature) for the determination of the best hydrolysate was also studied by evaluating the conversion rate of sucrose. The analytical procedures initially showed that canthaxanthin (CTX) and enzymatic hydrolysis were the most abundant pigment biosynthesized and the most suitable process for the substrate production, respectively. An increase in reducing sugar concentration of the enzymatic hydrolysate molasses (EHM) from 25 to 50 g/l led to a drastic decrease in biomass formation and substrate utilization. EHM (25 g/l) was a better substrate for the cell growth and product formation than the waste molasses (25 g/l). The application of EHM instead of molasses enhanced the biomass production in fed-batch culture more than batch and continuous cultures. However, the continuous cultivation had the highest biomass (12.98 g/l), carotenoid (27.33 mg/l) and CTX (25.04 mg/l) yields with 25 g/l of EHM. The CTX isolated from D. natronolimnaea HS-1 may be used as a natural antioxidant for possible production of healthy-functional foods in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available