4.5 Article

Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1758, Issue 7, Pages 934-941

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2006.05.014

Keywords

infrared imaging; cartilage; collagen; proteoglycan; osteoarthritis

Funding

  1. NIAMS NIH HHS [AR46121] Funding Source: Medline
  2. NIBIB NIH HHS [R01 EB000744, EB000744] Funding Source: Medline

Ask authors/readers for more resources

Significant complications in the management of ostcoarthritis (OA) are the inability to identify early cartilage changes during the development of the disease, and the lack of techniques to evaluate the tissue response to therapeutic and tissue engineering interventions. In recent studies several spectroscopic parameters have been elucidated by Fourier transform infrared imaging spectroscopy (FT-IRIS) that enable evaluation of molecular and compositional changes in human cartilage with progressively severe OA, and in repair cartilage from animal models. FT-IRIS permits evaluation of early-stage matrix changes in the primary components of cartilage, collagen and proteoglycan on histological sections at a spatial resolution of -6.25 mu m. In osteoarthritic cartilage, the collagen integrity, monitored by the ratio of peak areas at 1338 cm(-1)/Amide II, was found to correspond to the histological Mankin grade, the gold standard scale utilized to evaluate cartilage degeneration. Apparent matrix degradation was observable in the deep zone of cartilage even in the early stages of OA. FT-IRIS studies also found that within the territorial matrix of the cartilage cells (chondrocytes), proteoglycan content increased with progression of cartilage degeneration while the collagen content remained the same, but the collagen integrity decreased. Regenerative (repair) tissue from microfracture treatment of an equine cartilage defect showed significant changes in collagen distribution and loss in proteoglycan content compared to the adjacent normal cartilage, with collagen fibrils demonstrating a random orientation in most of the repair tissue. These studies demonstrate that FT-IRIS is a powerful technique that can provide detailed ultrastructural information on heterogeneous tissues such as diseased cartilage and thus has great potential as a diagnostic modality for cartilage degradation and repair. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available