4.8 Article

Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells

Journal

NATURE CELL BIOLOGY
Volume 8, Issue 7, Pages 677-U69

Publisher

NATURE PORTFOLIO
DOI: 10.1038/ncb1425

Keywords

-

Categories

Ask authors/readers for more resources

Satellite cells assure postnatal skeletal muscle growth and repair. Despite extensive studies, their stem cell character remains largely undefined. Using pulse-chase labelling with BrdU to mark the putative stem cell niche, we identify a subpopulation of label-retaining satellite cells during growth and after injury. Strikingly, some of these cells display selective template-DNA strand segregation during mitosis in the muscle fibre in vivo, as well as in culture independent of their niche, indicating that genomic DNA strands are nonequivalent. Furthermore, we demonstrate that the asymmetric cell-fate determinant Numb segregates selectively to one daughter cell during mitosis and before differentiation, suggesting that Numb is associated with self-renewal. Finally, we show that template DNA cosegregates with Numb in label-retaining cells that express the self-renewal marker Pax7. The cosegregation of 'immortal' template DNA strands and their link with the asymmetry apparatus has important implications for stem cell biology and cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available