4.5 Article

Modeling new particle formation during air pollution episodes: Impacts on aerosol and cloud condensation nuclei

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 40, Issue 7, Pages 557-572

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820600714346

Keywords

-

Ask authors/readers for more resources

The impact of new particle formation on regional air quality and CCN formation is for the first time explored using the UAM-AERO air quality model. New particles are formed by ternary nucleation of sulfuric acid, ammonia and water; subsequent growth of clusters to large sizes is driven by condensation of sulfuric acid and organic vapors, as described by the recently developed nano-Kohler theory. Application of the model in Athens (GAA) and Marseilles (GMA) reveals higher sulfuric acid condensational sink and gaseous sulfuric acid (hence nucleation rate) for the latter. However, limited quantities of organic vapors in the GMA inhibit the growth of the formed clusters; therefore new particle formation is more efficient in the GAA. A sensitivity analysis demonstrates that (1) uncertainty in vaporization enthalpy does not affect organic carbon formed by nucleation, and (2) an accommodation coefficient of unity gives excellent agreement of condensation sink with in-situ observations. Nucleation affects the aerosol size distribution, and can be an important contributor to CCN; locally it can be more important than chemical ageing of pre-existing aerosols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available