4.6 Article

The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 26, Issue 7, Pages 937-950

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1038/sj.jcbfm.9600246

Keywords

AIF; astrocytes; cell death; focal ischemia; protein aggregation; reperfusion injury

Funding

  1. NCI NIH HHS [CA81421] Funding Source: Medline
  2. NIGMS NIH HHS [GM49831] Funding Source: Medline
  3. NINDS NIH HHS [NS37520] Funding Source: Medline

Ask authors/readers for more resources

Heat shock protein (Hsp) 70 can suppress both necrosis and apoptosis induced by various injuries in vivo and in vitro. However, the relative importance of different functions and binding partners of Hsp70 in ischemic protection is unknown. To explore this question, we tested the ability of Hsp70-K71E, an adenosine triphosphate (ATP) ase-deficient point mutant, and Hsp70-381-640, a deletion mutant lacking the ATPase domain and encoding the carboxyl-terminal portion, to protect against ischemia-like injury in vivo and in vitro. Heat shock protein 70-wild type (-WT), -K71E, -381-640, and control vector plasmid LXSN were expressed in primary murine astrocyte cultures. Astrocytes overexpressing Hsp70-WT, -K71E, or -381-640 were all significantly protected from 4 h combined oxygen-glucose deprivation and 24 h reperfusion when assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay or propidium iodide staining and cell counting (P < 0.05). Brains of rats were transfected with plasmids encoding Hsp70-WT, -K71E, -381-640, or LXSN 24 h before 2 h middle cerebral artery occlusion followed by 24 h reperfusion. Animals that overexpressed either of the mutant proteins or Hsp70-WT had significantly better neurological scores and smaller infarcts than control animals. Protection by both mutants was associated with reduced protein aggregation, as assessed by ubiquitin immunohistochemistry and reduced nuclear translocation of apoptosis-inducing factor. The results show that the carboxyl-terminal portion of Hsp70 is sufficient for neuroprotection. This indicates that neither the ability to fold denatured proteins nor interactions with cochaperones or other proteins that bind the amino-terminal half of Hsp70 are essential to ischemic protection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available