4.7 Article

A clean, efficient system for producing Charcoal, Heat and Power (CHaP)

Journal

FUEL
Volume 85, Issue 10-11, Pages 1566-1578

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2005.10.026

Keywords

charcoal; LCV wood gas; combustor; small gas turbine

Ask authors/readers for more resources

There is a strong domestic and industrial market for charcoal in the UK and is still used in many developing countries for cooking and heating as well as for many industrial applications. It is usually made in small-scale simple kilns that are very damaging to the environment, very inefficient and labour intensive. The Charcoal, Heat and Power (CHaP) process offers a method for producing clean efficient charcoal under pressurised conditions and uses the product gas from the carbonisation process to drive a small gas turbine to produce heat and power. The charcoal is produced using waste forestry matter and other waste wood, including that from sustainably managed forests. The CHaP system can also be used in developing countries where there is an excess of forestry waste and a shortage of fossil fuels. The CHaP process was initially designed, developed and a prototype system built. This paper discusses the CHaP design and the various components used, their separate development and integration into a system. Tests showed the process successfully produced a high quality charcoal and the product gas effectively used to drive a gas turbine. The CHaP technology was proven and a new novel system of producing charcoal under pressurised conditions was created coupled with a novel use of the product gas whose output was green heat and power. The initial CHaP prototype showed the process was capable of producing low emissions and is virtually carbon neutral. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available