4.7 Article

Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments

Journal

PLANTA
Volume 224, Issue 2, Pages 300-314

Publisher

SPRINGER
DOI: 10.1007/s00425-005-0214-8

Keywords

antioxidant metabolism; ascorbate peroxidase; BY-2 tobacco cells; green fluorescent protein; Oryza

Categories

Ask authors/readers for more resources

Aerobic organisms evolved a complex antioxidant system, which protect the cells against oxidative damage caused by partially reduced oxygen intermediates, also known as reactive oxygen species. In plants, ascorbate peroxidases (EC, 1.11.1.11) catalyze the conversion of H2O2 to H2O, using ascorbate as the specific electron donor in this enzymatic reaction. Previously, eight APx genes were identified in the rice (Oryza sativa L.) genome through in silico analysis: two cytosolic isoforms, two putative peroxisomal isoforms, and four putative chloroplastic ones. Using gene-specific probes, we confirmed the presence of the eight APx genes in the rice genome by Southern blot hybridization. Transcript accumulation analysis showed specific expression patterns for each member of the APx family according to developmental stage and in response to salt stress, revealing the complexity of the antioxidant system in plants. Finally, the subcellular localization of rice APx isoforms was determined using GFP-fusion proteins in BY-2 tobacco cells. In agreement with the initial prediction, OSAPX3 was localized in the peroxisomes. On the other hand, the OSAPX6-GFP fusion protein was found in mitochondria of the BY-2 cells, in contrast to the chloroplastic location predicted by sequence analysis. Our findings reveal the functional diversity of the rice APx genes and suggest complementation and coordination of the antioxidant defenses in different cellular compartments during development and abiotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available