4.7 Article Proceedings Paper

Nested N-terminal megalin fragments induce high-titer autoantibody and attenuated Heymann nephritis

Journal

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
Volume 17, Issue 7, Pages 1979-1985

Publisher

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2005101144

Keywords

-

Funding

  1. NCI NIH HHS [CA90564] Funding Source: Medline
  2. NIDDK NIH HHS [DK33941] Funding Source: Medline

Ask authors/readers for more resources

It was shown previously that an N-terminal fragment (nM60) that encompasses amino acid residues 1 to 563 of megalin could induce active Heymann nephritis (AHN) as efficiently as the native protein. For delineation of a minimal structure within this fragment that is sufficient to induce AHN, smaller protein fragments that encompass residues 1 to 236 (L6), 1 to 195 (L5), 1 to 156 (L4), and I to 120 (L3), representing successive C-terminal truncations within ligand-binding repeats of nM60, were cloned and produced in a baculovirus insect cell expression system. Protein fragments L4, L5, and L6 clearly were glycosylated. All four fragments stimulated proliferation of megalin-sensitized lymph node cells and induced high-titer anti-megalin autoantibodies in Lewis rats. A full-blown disease, as assessed by severity of proteinuria, was observed in rats that were immunized with L6 and L5, whereas animals that were immunized with L4 and L3 developed only mild disease. The proteinuria levels correlated with staining for complement (C3, C5b-9) and IgG1 isotype in glonterular immune deposits. The results suggest that one or more molecular determinants on the region that comprises amino acid residues 157 to 236 contribute to the induction of a full-blown form of AHN. Study of the structure, conformation, and posttranslational modifications of these determinants could provide greater insight into the molecular correlates of immunopathogenesis in this disease model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available