4.8 Article

Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars

Journal

CARBON
Volume 44, Issue 8, Pages 1496-1502

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2005.12.009

Keywords

carbon fibers; carbon composites; microcracking; damage; electrical properties; strain effect; cement; electrical (electronic) properties; elastic properties; mechanical properties

Ask authors/readers for more resources

Self-sensing of flexural damage and strain in carbon fiber reinforced cement is attained by measuring the volume or surface resistance with the four-probe method and electrical contacts on the compression and/or tension surfaces. The oblique resistance (volume resistance in a direction between the longitudinal and through-thickness directions) increases upon loading and is a good indicator of damage and strain in combination. The surface resistance on the compression side decreases upon loading and is a good indicator of strain. The surface resistance on the tension side increases upon loading and is a good indicator of damage. The effectiveness for the self-sensing of flexural strain in carbon fiber reinforced cement is enhanced by the presence of embedded steel rebars on the tension side. For the same midspan deflection, the fractional change in surface electrical resistance is increased in magnitude, whether the surface resistance is that of the tension side or the compression side. The fractional change in resistance of the tension surface is increased by 40%, while the magnitude of the fractional change in resistance of the compression surface is increased by 70%, due to the steel. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available