4.5 Article

Gene 33/RALT is induced by hypoxia in cardiomyocytes, where it promotes cell death by suppressing phosphatidylinositol 3-kinase and extracellular signal-regulated kinase survival signaling

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 26, Issue 13, Pages 5043-5054

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.02387-05

Keywords

-

Funding

  1. NHLBI NIH HHS [HL67371, R01 HL067371] Funding Source: Medline
  2. NIDDK NIH HHS [F32 DK062680, DK62680] Funding Source: Medline
  3. NIGMS NIH HHS [R01 GM046577, GM46577] Funding Source: Medline

Ask authors/readers for more resources

Ischemia in the heart deprives cardiomyocytes of oxygen, triggering cell death (myocardial infarction). Ischemia and its cell culture model, hypoxia, elicit a stress response program that contributes to cardiomyocyte death; however, the molecular components required to promote this process remain nebulous. Gene 33 is a 50-kDa cytosolic adapter protein that suppresses signaling from receptor Tyr kinases of the epidermal growth factor receptor/ErbB family. Here we show that adenoviral expression of Gene 33 swiftly stimulates cardiomyocyte death coincident with reduced Akt and extracellular signal-regulated kinase (ERK) signaling. Subjecting cardiomyocytes to hypoxia and then reoxygenation induces gene 33 mRNA and Gene 33 protein. RNA interference experiments indicate that endogenous Gene 33 reduces Akt and ERK signaling and is required for maximal hypoxia-induced cardiomyocyte death. Gene 33 levels are also strikingly increased in myocardial ischemic injury and infarction. Our results identify a new role for Gene 33 as a component in the molecular pathophysiology of ischemic injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available