4.5 Article

Calcium-regulated potassium currents secure respiratory rhythm generation after loss of glycinergic inhibition

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 24, Issue 1, Pages 145-154

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2006.04877.x

Keywords

after-hyperpolarization; deletion compensating responses; glycine receptor; respiratory rhythm generation; synaptic transmission and plasticity

Categories

Ask authors/readers for more resources

Mutant oscillator mice (Glra1(spd -/-)) are characterized by a developmental loss of glycinergic inhibition. These mice die during the third postnatal week presumably due to gradually increasing disturbances of breathing and motor behaviour. Some irregular rhythmic respiratory activity, however, is persevered until they die. Here we analysed cellular mechanisms that compensate for the loss of glycinergic inhibition and contribute to the maintenance of the respiratory rhythm. In a medullary slice preparation including the pre-Botzinger complex we performed a comparative analysis of after-hyperpolarizations following action potentials (AP-AHP) and burst discharges (burst-AHP) in identified respiratory neurons from oscillator and control mice. Both AHP forms were increased in neurons from oscillator mice. These changes were combined with an augmented adaptation of firing frequency. Assuming that oscillator mice might upregulate calcium-activated K currents (BKCa) in compensation for the loss of glycinergic inhibition, we blocked the big KCa conductances with iberiotoxin and verified that the respiratory rhythm was indeed arrested by BK channel blockade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available