4.5 Article

Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat

Journal

BIOLOGY OF REPRODUCTION
Volume 75, Issue 1, Pages 56-67

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.105.047225

Keywords

growth factors; Sertoli cells; testis

Funding

  1. NICHD NIH HHS [R03 HD041546, R03 HD041546-01A1, R03 HD41546, R03 HD041546-02] Funding Source: Medline

Ask authors/readers for more resources

Morphological male sex determination is dependent on migration of endothelial and preperitubular cells from the adjacent mesonephros into the developing testis. Our hypothesis is that VEGFA and its receptor KDR are necessary for both testicular cord formation and neovascularization. The Vegfa gene has 8 exons with many splice variants. Vegfa120, Vegfa164, and Vegia188 mRNA isoforms were detected on Embryonic Day (E) 13.5 (plug date = E0) in the rat. Vegfa120, Vegfa144, Vegfa164, Vegfa188, and Vegfa205 mRNA were detected at E18 and Postnatal Day 3 (P3). Kdr mRNA was present on E13.5, whereas Fms-like tyrosine kinase 1 receptor (Flt1) mRNA was not detected until E18. VEGFA protein was localized to Sertoli cells at cord formation and KDR to germ and interstitial cells. The VEGFA signaling inhibitors SU1498 (40 mu M) and VEGFR-TKI (8 mu M) inhibited cord formation in E13 testis cultures with 90% reduced vascular density (P < 0.01) in VEGFR-TKI-treated organs. Furthermore, Je-11 (10 mu M), an antagonist to VEGFA, also perturbed cord formation and inhibited vascular density by more than 50% (P < 0.01). To determine signal transduction pathways involved in VEGFA's regulation of testis morphogenesis, E13 testis were treated with LY 294002 (15 mu M), a phosphoinositicle 3-kinase (PI3K) pathway inhibitor, resulting in inhibition of both vascular density (46%) and cord formation. Thus, we support our hypothesis and conclude that VEGFA, secreted by the Sertoli cell, is involved in both neovascularization and cord formation and potentially acts through the PI3K pathway during testis morphogenesis to elicit its effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available