4.8 Review

Enantioselective total synthesis of avrainvillamide and the stephacidins

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 26, Pages 8678-8693

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja061660s

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 071498] Funding Source: Medline

Ask authors/readers for more resources

In this article, full details regarding our total synthesis of avrainvillamide and the stephacidins are presented. After an introduction and summary of prior synthetic studies in this family of structurally complex anticancer natural products, the evolution of a final synthetic approach is described. Thus, a thorough description of three separate model studies is provided for construction of the characteristic bicyclo[ [2.2.2]diazaoctane ring system common to these alkaloids. The first and second approaches sought to build the core using formal Diels-Alder and vinyl radical pathways, respectively. Although these strategies failed in their primary objective, they fostered the development of a new and mechanistically intriguing method for the synthesis of indolic enamides such as those found in numerous bioactive natural products. The scope and generality of this simple method for the direct dehydrogenation of tryptophan derivatives is described. Finally, details of a third and successful route to the core of these alkaloids are described which features oxidative C-C bond formation. Specifically, the first heterocoupling of two different types of carbonyl species ( ester and amide) is accomplished in good yield, on a preparative scale, and with complete stereocontrol. The information gained in these model studies enabled an enantioselective total synthesis of stephacidin A. The absolute configuration of these alkaloids was firmly established in collaboration with Professor William Fenical. A full account of our successful efforts to convert stephacidin A into stephacidin B via avrainvillamide is presented. Finally, the first analogues of these natural products have been prepared and evaluated for anticancer activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available