4.5 Article

Selective coalescence of bubbles in simple electrolytes

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 26, Pages 13062-13067

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0610158

Keywords

-

Ask authors/readers for more resources

Simple ions in electrolytes exhibit different degrees of affinity for the approach to the free surface of water. This results in strong ion-specific effects that are particularly dramatic in the selective inhibition of bubble coalescence. I present here the calculation of electrostatic interaction between free surfaces of electrolytes caused by the ion accumulation or depletion near a surface. When both anion and cation are attracted to the surface (like H+ and Cl- in HCl solutions), van der Waals attraction facilitates approach of the surfaces and the coalescence of air bubbles. When only an anion or cation is attracted to the surface (like Cl- in NaCl solutions), an electric double layer forms, resulting in repulsive interaction between free surfaces. I applied the method of effective potentials (evaluated from published ion density profiles obtained in simulations) to calculate the ionic contribution to the surface-surface interaction in NaCl and HCl solutions. In NaCl, but not in HCl, the double-layer interaction creates a repulsive barrier to the approach of bubbles, in agreement with the experiments. Moreover, the concentration where ionic repulsion in NaCl becomes comparable in magnitude to the short-range hydrophobic attraction corresponds to the experimentally found transition region toward the inhibition of coalescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available