4.7 Article

Leucovorin-induced resistance against FDH growth suppressor effects occurs through DHFR up-regulation

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 72, Issue 2, Pages 256-266

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2006.04.005

Keywords

FDH; folate; DHFR; leucovorin; enzyme product inhibition; growth suppressor; A549 cells; resistance mechanism

Funding

  1. NCI NIH HHS [CA95030] Funding Source: Medline
  2. NIDDK NIH HHS [DK54388] Funding Source: Medline

Ask authors/readers for more resources

10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate to tetrahydrofolate (THF). Expression of the enzyme in FDH-deficient cancer cells induces cytotoxicity that can be reversed by supplementation with high concentrations of a reduced folate, 5-formyl-THF (leucovorin). In contrast, non-tumor cells are resistant to FDH. The present study was undertaken to investigate mechanisms that could protect cells against FDH suppressor effects. Using 10 mu M leucovorin supplementation of FDH-sensitive A549 cells transfected for FDH expression, we selected clones that have acquired resistance against FDH. Resistant cells expressed high levels of FDH and were capable of growing after withdrawal of leucovorin. These cells, however, have increased doubling time due to prolonged S phase. They also have significantly increased levels of total folate pool and THF/5,10-methylene-THF pool while the level of 10-formyl-THF was two-fold lower than in parental FDH-sensitive cells. We have shown that the FDH-catalyzed reaction proceeds at about a three-fold slower rate at the ratio of 10-formyl-THF/THF corresponding to the resistant cells than at the ratio corresponding to parental sensitive cells, due to product inhibition (K-I is 2.35 mu M). FDH-resistant cells have strongly up-regulated dihydrofolate reductase (DHFR) that is proposed to be a mechanism for the alteration of folate pools and a key component of the acquired resistance. Elevation of DHFR in A549 cells by transient transfection decreased sensitivity to FDH toxicity and allowed selection of FDH-resistant clones. DHFR-induced repression of FDH catalysis could be an S phase-related metabolic adjustment that provides protection against FDH suppressor effects. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available