4.8 Article

Oxidation catalysis by oxide-supported Au nanostructures: The role of supports and the effect of external conditions

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 2, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.026101

Keywords

-

Ask authors/readers for more resources

Oxide-supported Au nanostructures are promising low-temperature oxidation catalysts. It is generally observed that Au supported on reducible oxides is more active than Au supported on irreducible oxides. Recent studies also suggest that cationic Au delta+ is responsible for the unique Au/oxide catalytic activity, contrary to the conventional perception that oxide supports donate electronic charge to Au. We have utilized density functional calculations and ab initio thermodynamic studies to investigate the oxidation state of Au nanostructures deposited on reducible and irreducible supports. We find that there are fundamental differences in the electronic structure of Au deposited on the different oxides. We propose a simple model, grounded in the first principles calculations, which can explain the oxide-specific catalytic activity of Au nanostructures and which can account for the presence and the role of cationic Au delta+.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available