4.6 Article

Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 28, Pages 19426-19432

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602203200

Keywords

-

Funding

  1. Medical Research Council [MC_U105178937] Funding Source: Medline
  2. NEI NIH HHS [EY09514] Funding Source: Medline
  3. Medical Research Council [MC_U105178937] Funding Source: researchfish
  4. MRC [MC_U105178937] Funding Source: UKRI

Ask authors/readers for more resources

Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of recoverin from rhodopsin kinase, freeing the kinase to phosphorylate rhodopsin and to terminate the light response. Previous studies have shown that recoverin is able to bind to a region at the N terminus of rhodopsin kinase. In this study we map this interaction interface, showing that residues 1-15 of the kinase form the interaction site for recoverin binding. Mutation of hydrophobic residues in this region have the greatest effect on the interaction. The periodic nature of these residues suggests that they lie along one face of an amphipathic helix. We show that this region is essential for recoverin binding, as a catalytically active kinase lacking these residues is unable to bind recoverin. In addition, we show that neither the N-terminal deletion nor the presence of recoverin inhibits the overall catalytic activity of the kinase, as measured by light-independent autophosphorylation. Finally, we observe that a kinase mutant lacking the N-terminal recoverin binding site is unable to phosphorylate light-activated rhodopsin. Taken together, these data support a model in which recoverin prevents rhodopsin phosphorylation by sterically blocking a region of kinase essential for its interaction with rhodopsin, thereby preventing recognition of rhodopsin as a kinase substrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available