4.7 Article

Investigation on hexamethyldisilazane vapor treatment of plasma-damaged nanoporous organosilicate films

Journal

APPLIED SURFACE SCIENCE
Volume 252, Issue 18, Pages 6323-6331

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2005.08.060

Keywords

plasma-damage; porous films; low-k; supercritical CO2

Ask authors/readers for more resources

Hexamethyldisilazane (HMDS) vapor treatment of plasma-damaged nanoporous organosilicate thin films has been studied as a function of treatment temperature in this work. Although, the HMDS vapor treatment facilitated incorporation of methyl (CH3) groups subsequent to the removal of free hydroxyl (OH) groups in the damaged films at treatment temperature as low as 55 degrees C, the bonded OH groups were not removed. More significantly, detailed analysis of the results reveals that HMDS vapor modified only the surface of the plasma-damaged samples and not the entire film as expected. This is attributed to the formation of a thin solid layer on the surface, which effectively prevents penetration of HMDS vapors into the bulk. The Fourier transform-infrared (FT-IR) absorption and dielectric constant measurements confirm that the vapor treatment assists only partial curing of the plasma-damaged films. Alternative processes of curing the films with HMDS dissolved in supercritical carbon dioxide (SCCO2) as a medium of reaction in static and pulsed modes were also attempted and the results are presented in this paper. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available