4.7 Article

BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-β-catenin interactions

Journal

JOURNAL OF CELL BIOLOGY
Volume 174, Issue 2, Pages 289-299

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200601087

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [P01 NS16033, P01 NS016033] Funding Source: Medline

Ask authors/readers for more resources

Neurons of the vertebrate central nervous system have the capacity to modify synapse number, morphology, and efficacy in response to activity. Some of these functions can be attributed to activity-induced synthesis and secretion of the neurotrophin brain-derived neurotrophic factor (BDNF); however, the molecular mechanisms by which BDNF mediates these events are still not well understood. Using time-lapse confocal analysis, we show that BDNF mobilizes synaptic vesicles at existing synapses, resulting in small clusters of synaptic vesicles splitting away from synaptic sites. We demonstrate that BDNF's ability to mobilize synaptic vesicle clusters depends on the dissociation of cadherin-beta-catenin adhesion complexes that occurs after tyrosine phosphorylation of beta-catenin. Artificially maintaining cadherin-beta-catenin complexes in the presence of BDNF abolishes the BDNF-mediated enhancement of synaptic vesicle mobility, as well as the longer-term BDNF-mediated increase in synapse number. Together, this data demonstrates that the disruption of cadherin-beta-catenin complexes is an important molecular event through which BDNF increases synapse density in cultured hippocampal neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available