4.7 Review

Estimating Equations for Glomerular Filtration Rate in the Era of Creatinine Standardization A Systematic Review

Journal

ANNALS OF INTERNAL MEDICINE
Volume 156, Issue 11, Pages 785-+

Publisher

AMER COLL PHYSICIANS
DOI: 10.7326/0003-4819-156-11-201203200-00391

Keywords

-

Funding

  1. Kidney Disease: Improving Global Outcomes
  2. KDIGO
  3. National Kidney Foundation
  4. National Institutes of Health

Ask authors/readers for more resources

Background: Clinical laboratories are increasingly reporting estimated glomerular filtration rate (GFR) by using serum creatinine assays traceable to a standard reference material. Purpose: To review the performance of GFR estimating equations to inform the selection of a single equation by laboratories and the interpretation of estimated GFR by clinicians. Data Sources: A systematic search of MEDLINE, without language restriction, between 1999 and 21 October 2011. Study Selection: Cross-sectional studies in adults that compared the performance of 2 or more creatinine-based GFR estimating equations with a reference GFR measurement. Eligible equations were derived or reexpressed and validated by using creatinine measurements traceable to the standard reference material. Data Extraction: Reviewers extracted data on study population characteristics, measured GFR, creatinine assay, and equation performance. Data Synthesis: Eligible studies compared the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations or modifications thereof. In 12 studies in North America, Europe, and Australia, the CKD-EPI equation performed better at higher GFRs (approximately > 60 mL/min per 1.73 m(2)) and the MDRD Study equation performed better at lower GFRs. In 5 of 8 studies in Asia and Africa, the equations were modified to improve their performance by adding a coefficient derived in the local population or removing a coefficient. Limitation: Methods of GFR measurement and study populations were heterogeneous. Conclusion: Neither the CKD-EPI nor the MDRD Study equation is optimal for all populations and GFR ranges. Using a single equation for reporting requires a tradeoff to optimize performance at either higher or lower GFR ranges. A general practice and public health perspective favors the CKD-EPI equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available