4.6 Article

How to extract selectively the lo-phase domains from large unilamellar vesicles with Triton X-100?

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2005.12.044

Keywords

rafts; DRMs; l(o)-phase domains; Triton X-100; LUV

Ask authors/readers for more resources

The structural transition stages induced as a result of interaction at 4 degrees C of the Triton X-100 with large unilamellar vesicles (LUVs) were studied by means of a sucrose flotation procedure similar to that used to isolate biological detergent resistant membranes (DRMs). Flotation of lipid structures after centrifugation was determined on the basis of the [1 alpha, 2 alpha (n)-H-3]-cholesterol content of each fraction of a 40-35-5% sucrose density gradient. We measured the amount of Triton X-100 insoluble floating fractions (TIFFs) for different lipid compositions of large unilamellar vesicles and different effective detergent to lipid ratios. At 4 degrees C and for two-component lipid membrane (PC/SM 2:1,mol/mol), an effective detergent to lipid ratio of 50 is necessary to complete membrane solubilization. When liquid-ordered and liquid-disordered phase domains coexist in the vesicle membrane (PC/SM/Chol 53:27:20, mol/mol), complete solubilization occurs at higher effective detergent to lipid ratio. This is consistent with a higher resistance of the liquid-ordered phase to detergent extraction. Nevertheless, in the case of heterogeneous (l(o)/l(d) phase) vesicles, and for a range of effective detergent to lipid ratios promoting incomplete solubilization, we detected in TIFF intermediate density structures which did not exist for two-component lipid membranes (PC/SM 2:1, mol/mol). We interpreted these results in relation with recent findings of our group and propose a mechanism for heterogeneous large unilamellar vesicle solubilization. We show that for lipid bilayers exhibiting l(o)/l(d) phase co-existence, a specific effective detergent to lipid ratio allowing the isolation of pre-existing tightly packed ordered domains can be found, but, in any case, certain amount of the detergent is presented in floating fraction membranes. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available