4.8 Article

First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 34, Pages 18985-18996

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b02904

Keywords

solid electrolyte interface; LiF; NaF; DFT; defect thermodynamics; diffusion

Funding

  1. Center for Electrochemical Energy Science, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

The formation mechanism and composition of the solid electrolyte interphase (SEI) in lithium ion batteries has been widely explored. However, relatively little is known about the function of the SEI as a transport medium. Such critical information is directly relevant to battery rate performance, power loss, and capacity fading. To partially bridge this gap in the case of inorganic SEI compounds, we report herein the results of first-principles calculations on the defect thermodynamics, the dominant diffusion carriers, and the diffusion pathways associated with crystalline LiF and NaF, which are stable components of the SEI in Li-ion and Na-ion batteries, respectively. The thermodynamics of common point defects are computed, and the dominant diffusion carriers are determined over a voltage range of 0-4 V, corresponding to conditions relevant to both anode and cathode SEI's. Our analyses reveal that for both compounds, vacancy defects are energetically more favorable, therefore form more readily than interstitials, due to the close-packed nature of the crystal structures. However, the vacancy concentrations are very small for the diffusion processes facilitated by defects. Ionic conductivities are calculated as a function of voltage, considering the diffusion carrier concentration and the diffusion barriers as determined by nudged elastic band calculations. These conductivities are more than ten orders of magnitude smaller in NaF than in LiF. As compared to the diffusivity of Li in other common inorganic SEI compounds, such as Li2CO3 and Li2O,the cation diffusivity in LiF and NaF is quite low, with at least three orders of magnitude lower ionic conductivities. The results quantify the extent to which fluorides pose rate limitations in Li and Na batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available