4.8 Article

Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.046402

Keywords

-

Ask authors/readers for more resources

We study the Mott transition, antiferromagnetism, and superconductivity in layered organic conductors using the cellular dynamical mean-field theory for the frustrated Hubbard model. A d-wave superconducting phase appears between an antiferromagnetic insulator and a metal for t(')/t=0.3-0.7 or between a nonmagnetic Mott insulator (spin liquid) and a metal for t(')/t >= 0.8, in agreement with experiments on layered organic conductors including kappa-(ET)(2)Cu-2(CN)(3). These phases are separated by a strong first-order transition. The phase diagram gives much insight into the mechanism for d-wave superconductivity. Two predictions are made.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available