4.6 Article

The simplified methods of evaluating detention storage volume for small catchment

Journal

ECOLOGICAL ENGINEERING
Volume 26, Issue 4, Pages 355-364

Publisher

ELSEVIER
DOI: 10.1016/j.ecoleng.2005.12.006

Keywords

detention facility; detention storage volume; flood hydrograph

Ask authors/readers for more resources

Massive land development reduces the plant-cover area and increases the impervious area of watershed, which induces downstream flooding. A detention pond stores runoff from watershed and releases the stored runoff slowly to reduce the flood threat in the downstream area. While the runoff hydrograph is irregular, several researches verify that the runoff hydrograph can be represented by simple geometrical-shaped (such as triangular or trapezoidal) hydrographs. This study collects and develops simplified detention volume design models. The study also develops a suitable hydrological condition and the calculation method of detention volume for various models. A real world case is used to demonstrate the calculation procedure used in the detention pond design. The case shows that the combination of triangular inflow and triangular outflow produces a maximum detention volume, which implies a large reduction of peak flow needs greater detention volume. The combination of trapezoidal inflow and triangular outflow produces a second large detention volume. It implies a long duration of inflow hydrograph (IH) needs greater detention volume. A combination of triangular inflow and trapezoidal outflow results in a minimum detention volume, which indicates that either the storm water drains completely before the permissible outflow occurs, or storm water is kept from entering the detention pond before the inflow rate reaches the permissible outflow. In either case, the detention pond has more space to accommodate the flood inflow so as to reduce the rate of peak outflow. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available