4.7 Article

Nuclear export assays for poly(A) RNAs

Journal

METHODS
Volume 39, Issue 4, Pages 363-369

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymeth.2006.07.002

Keywords

mRNA export; nuclear pore complex; in situ hybridization; immunofluorescence; reporter gene assay; luciferase

Ask authors/readers for more resources

Nuclear export of mRNAs is a central step in eukaryotic gene expression. A defect in bulk poly(A) RNA export can be caused either by a direct disruption of the mRNA export machinery or by an indirect effect on mRNA biogenesis. One example of interference with the mRNA export pathway is viral-host interactions involving mRNA export factors. VSV M protein binds the mRNA export factor Rae1 that is in complex with Nup98, resulting in nuclear retention of mRNAs. To study regulation of mRNA export, we review here two useful methodologies, which include a reporter gene assay and oligo(dT) in situ hybridization. In a reporter gene assay one can assess up-regulation or down-regulation of gene expression that can occur at different levels, including transcription, mRNA processing, mRNA export, and translation. An effect on mRNA export can then be identified by determining the intracellular distribution of poly(A) RNA using oligo(dT) in situ hybridization. Reporter gene assays are quick, relatively simple and can thus be used in primary highthroughput screenings. To further pinpoint disruption of mRNA export, oligo(dT) in situ hybridization can be used. Since it is a more laborious methodology it is more suitable for a secondary screening. We also review here a combination of oligo(dT) in situ hybridization with immunofluorescence for simultaneous localization of endogenous or ectopically expressed proteins. Altogether, these assays are valuable tools for identifying major regulatory effects on mRNA nuclear export. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available