4.6 Article

Local-field correction to the spontaneous decay rate of atoms embedded in bodies of finite size

Journal

PHYSICAL REVIEW A
Volume 74, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.74.023803

Keywords

-

Ask authors/readers for more resources

The influence of the size and shape of a dispersing and absorbing dielectric body on the local-field-corrected spontaneous decay of an excited atom embedded in a body is studied on the basis of the real-cavity model. By means of a Born expansion of the Green tensor of the system it is shown that to linear order in the susceptibility of the body the decay rate exactly follows Tomas's formula found for the special case of an atom at the center of a homogeneous dielectric sphere [Phys. Rev. A 63, 053811 (2001)]. It is further shown that for an atom situated at the interior of an arbitrary dielectric body this formula remains valid beyond linear order. The case of an atom embedded in a weakly polarizable sphere is discussed in detail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available