4.4 Article

Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis

Journal

ARCHIVES OF MICROBIOLOGY
Volume 186, Issue 2, Pages 129-137

Publisher

SPRINGER
DOI: 10.1007/s00203-006-0128-2

Keywords

deoxyribonucleic acid (DNA) replication; expression; purification; thermophilic bacteria; thermostability

Categories

Ask authors/readers for more resources

To study the biochemical properties of single-stranded DNA-binding (SSB) protein from Deinococcus geothermalis (DgeSSB), we have cloned the ssb gene obtained by PCR and developed an overexpression system. The gene consists of an open reading frame of 900 nucleotides encoding a protein of 300 amino acids with a calculated molecular weight of 32.45 kDa. The amino acid sequence exhibits 43, 44 and 75% identity with Thermus aquaticus, Thermus thermophilus and Deinococcus radiodurans SSBs, respectively. We show that DgeSSB is similar to Thermus/Deinococcus SSB in its biochemical properties. DgeSSB includes two oligonucleotide/oligosaccharide-binding folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT), DgeSSB bound about 30 nt independent of the salt concentration, and the fluorescence was quenched by about 65%. In a complementation assay in Escherichia coli, DgeSSB took over the in vivo function of EcoSSB. DgeSSB is thermostable with half-lives of 50 min at 70 degrees C and 5 min at 90 degrees C. Hence, DgeSSB offers an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and for analytical purposes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available