4.6 Article

Dark periods and revivals of entanglement in a two-qubit system

Journal

PHYSICAL REVIEW A
Volume 74, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.74.024304

Keywords

-

Ask authors/readers for more resources

In a recent paper Yu and Eberly [Phys. Rev. Lett. 93, 140404 (2004)] have shown that two initially entangled and afterward not interacting qubits can become completely disentangled in a finite time. We study transient entanglement between two qubits coupled collectively to a multimode vacuum field, assuming that the two-qubit system is initially prepared in an entangled state produced by the two-photon coherences, and find the unusual feature that the irreversible spontaneous decay can lead to a revival of the entanglement that has already been destroyed. The results show that this feature is independent of the coherent dipole-dipole interaction between the atoms but it depends critically on whether or not collective damping is present.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available