4.7 Review

First-principles modelling of Earth and planetary materials at high pressures and temperatures

Journal

REPORTS ON PROGRESS IN PHYSICS
Volume 69, Issue 8, Pages 2365-2441

Publisher

IOP Publishing Ltd
DOI: 10.1088/0034-4885/69/8/R03

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/C546385/1] Funding Source: researchfish
  2. Natural Environment Research Council [NER/O/S/2001/01227, NE/C51889X/1] Funding Source: researchfish
  3. EPSRC [EP/C546385/1] Funding Source: UKRI

Ask authors/readers for more resources

Atomic-scale materials modelling based on first-principles quantum mechanics is playing an important role in the science of the Earth and the other planets. We outline the basic theory of this kind of modelling and explain how it can be applied in a variety of different ways to probe the thermodynamics, structure and transport properties of both solids and liquids under extreme conditions. After a summary of the density functional formulation of quantum mechanics and its practical implementation through pseudopotentials, we outline the simplestway of applying first-principles modelling, namely static zero-temperature calculations. We show how calculations of this kind can be compared with static compression experiments to demonstrate the accuracy of first-principles modelling at pressures reached in planetary interiors. Noting that virtually all problems concerning planetary interiors require an understanding of materials at high temperatures as well as high pressures, we then describe how first-principles lattice dynamics gives a powerful way of investigating solids at temperatures not too close to the melting line. We show how such calculations have contributed to important progress, including the recent discovery of the post-perovskite phase of MgSiO3 in the D '' layer at the base of the Earth's mantle. A range of applications of first-principles molecular dynamics are then reviewed, including the properties of metallic hydrogen in Jupiter and Saturn, of water, ammonia and methane in Uranus and Neptune, and of oxides and silicates and solid and liquid iron and its alloys in the Earth's deep interior. Recognizing the importance of phase equilibria throughout the planetary sciences, we review recently developed techniques for the first- principles calculation of solid and liquid free energies, melting curves and chemical potentials of alloys. We show how such calculations have contributed to an improved understanding of the temperature distribution and the chemical composition throughout the Earth's interior. The review concludes with a summary of the present state of the field and with some ideas for future developments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available